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Abstract

We argue that for a strongly connected simple directed graph G,
random walk on vertices of G and L(G) exhibit identical dynamics.

0 Introduction

Despite Whitney graph isomorphism theorem, visitation frequencies gen-
erated by a random walk on vertices might approximate to different values
for edges of G and vertices of its line graph, L(G) (Evans and Lambiotte,
2009).

One can show that (see Blum, Theorem 5.2) the transition matrix of a
strongly connected simple directed graph has 1 as a left eigenvalue. Given G,
its adjacency matrix A(G) and its transition matrix P (G), there is a unique
π, called stationary distribution, such that πP (G) = π and

∑
i=1 πi = 1.

This is also the case for a connected simple undirected graph.
All vectors are 1 × k shaped matrices.

1 Undirected case

In this section G is a connected simple undirected graph with n vertices
and m edges. Fix any order on V (G) and E(G). Let π be its stationary
distribution.

Let deg(vi) be the degree of the vertex vi and

S = diag(
1

deg(v1)
, . . . ,

1

deg(vn)
)

be the diagonal matrix containing individual transition probabilities.
Let 1k denote the constant vector of length k with all elements equal to

1. We have SA(G) = P (G) and πi = deg(vi)
2m . Furthermore, πS =

1

2m
1n.

Definition 1. The incidence matrix of G is B(G), where

B(G)i,j =

{
1, if vi is indicent with ej

0, otherwise
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Observe that B(G) has exactly two 1s in each column, so we have

1

2m
1nB(G) =

1

m
1m

One can interpret 1
m1m as the edge visitation frequencies under a random

walk on vertices and π as vertex visitation frequencies. For an edge ei,j , we
are expecting a visit with

πi
deg(vi)

+
πj

deg(vj)
=

1

m

probability.

However, πL(G), stationary distribution of L(G) won’t be equal to
1

m
1m

unless G is a regular graph.
Intuitively, this difference in the dynamics of visitations comes from the

observation that, in G, one can go back and forth on an edge, which should
correspond to ”staying still” or looping in L(G), which is not a valid next
step.

2 Directed case

In this section G is a strongly connected simple directed graph with n
vertices and m edges. Fix any order on V (G) and E(G). Let π be its
stationary distribution.

Let degout(vi) be the out degree of the vertex vi, namely the number of
edges which have vi at its head. There is no closed form solution for π as it
was in the case for undirected. However, given π, the edge ei,j will have the
visitation frequency of

πi

degout(vi)
(1)

Definition 2. The in-incidence matrix of G is BI(G), where

BI(G)i,j =

{
1, if vi is the head of ej

0, otherwise

Definition 3. The out-incidence matrix of G is BO(G), where

BO(G)i,j =

{
1, if vi is the tail of ej

0, otherwise

Lemma 1. We have A(G) = BIB
T
O and A(L(G)) = BT

OBI . Furthermore,
let

S = diag(
1

degout(v1)
, . . . ,

1

degout(vn)
)
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Then we have
P (G) = SA(G)

and
P (L(G)) = BT

OSBI

Proof. By the definition of P (·), we have

P (L(G))ei,j ,ep,q =


1

degout(ei,j)
, if j = p

0, otherwise

An edge in L(G) goes out of ei,j if there was an edge in G starting from

vj . Hence we have degout(ei,j) = degout(vj) =
1

Sj,j
. Also,

BT
O(SBI)ei,j ,ep,q =

n∑
k=1

(BT
O)ei,j ,k(SBI)k,ep,q

=
n∑

k=1

(BO)k,ei,j (SBI)k,ep,q

=
n∑

k=1

(BO)k,ei,jSk,k(BI)k,ep,q

Now observe that (BO)k,ei,j is 1 if k = j and 0 otherwise. Similarly,

(BI)k,ep,q is 1 if k = p and 0 otherwise. Hence, we get Sj,j if k = j, p = j
and 0 otherwise, which is what we wanted to show.

Observe that this calculation was independent of the order on V (G) and
E(G) that was fixed in the beginning.

Other parts of the lemma follows with a similar calculation.

Edge visitation frequencies on G given a random walk on vertices should
be

F = πSBI

To see this, observe that BI has only one 1 on each column. Given an
edge ei,j , BI has that single 1 on column corresponding to ei,j (which is
probably not the column j, mind the notation) exactly at the row i. So we
have

Fei,j = (πS)i,i = πiSi,i =
πi

degout(vi)

as we wanted in equation 1.
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Lemma 2. F is the stationary distribution for L(G), i.e.

FP (L(G)) = F

Proof. We have πP (G) = π and via Lemma 1

P (L(G)) = BT
OSBI

Furthermore
π = πSA(G) = πSBIB

T
O

Multiplying both sides with SBI , we have

F = πSBI = πSBIB
T
OSBI

= πSBIP (L(G))

= FP (L(G))

With this, we can say that random walk on G gives the same edge
visitation frequencies as random walk on L(G) gives for the vertices. Hence,
there is no difference on dynamics of G and L(G) in this sense, as opposed
to the case of undirected.

Intuitively, this is obvious. Any step on G (or L(G)) has a clear corre-
sponding step in L(G) (or G).
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