
Dold-Kan Correspondence

Ahmet Emre Yalçınoğlu
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Introduction

Recall the construction of singular homology of a topological space.

Top sSet sAb

Ab Ch+
• (Ab)

Sing

HSing
n
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The main goal of this thesis is to focus on the passage from simplicial
abelian groups to chain complexes.

A simplicial set is like a combinatorial space built up out of gluing ab-
stract simplices to each other. Simplicial sets are purely algebraic and do not
carry any actual topology, but provide a suitable environment for homotopy
theory.

The Dold-Kan Correspondence shows that the category of connective
chain complexes of abelian groups and simplicial abelian groups are equiv-
alent categories observed by the functors

N : sAb −→ Ch+
• (Ab) and Γ : Ch+

• (Ab) −→ sAb.

Moreover, there’s a natural isomorphism between the homology groups
of chain complexes and and simplicial homotopy groups of simplicial abelian
groups.

This thesis starts with providing some preliminary information about
these categories in section 1. In section 2, we give a careful and detailed
proof of the correspondence and show that the normalized chain complex
and the Moore complex are chain homotopic. Combinatorial details of this
last theorem are particularly original. Then we end in section 3 by dis-
cussing the definition of simplicial homotopy and giving an application of
the correspondence through Eilenberg-Maclane spaces.
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1 The Dold-Kan Correspondence

The main goal of this chapter is to prove that the chain complexes and
simplicial abelian groups are equivalent categories and the normalized chain
complex carries all the necessary data for homology.

This correspondence is (independently) due to Albrecht Dold and Daniel
Kan (1958). Historical references for the Dold–Kan correspondence are [1]
and [7].

Majority of the content in this section will be very combinatorial. Through-
out this chapter, one might want to keep a close eye on the Table 1. Probably
the key theorem is Theorem 1.5, which implies why the ”normalized” is used
for the normalized chain complex. Observing this splitting for the singular
simplicial set for 2-simplices. We suggest looking at the n-simplices as n-cells
and applying face maps to as taking boundary.

1.1 Categorical equivalence

Throughout this chapter A is always a simplicial abelian group and [n] ∈ ∆
is replaced by n to ease the notation to for eye and this abuse of notation
should be no problem thanks to the context.

Lemma 1.1. The normalized chain complex NA associated to the simplicial
abelian group A, given by the groups

NAn =
n−1⋂

i=0

ker(di) ⊂ An

and by the maps

NAn
(−1)ndn−−−−−→ NAn−1.

is a subcomplex of MA.

Proof. Firstly, observe that for i < n the map NAn
di−→ NAn−1 is the zero

map by definition. Additionally, NAn
dn−→ NAn−1 is well-defined, because

for j < n− 1, by the simplicial identity S1 we have djdn = dn−1dj . Lastly,
we have NA0 = MA by definition.

This construction defines a functor N : sAb −→ Ch, where given a
simplicial map fn : An −→ Bn, N(f)n is defined as simply restricting the
domain to NAn. This gives a chain map in return, while the differential
is just sum of simplicial structure maps, which by definition commute with
the map f . We can also make the exact same point about the construction
of a Moore complex.

Lemma 1.2. Sum of degenerate simplices in degree n

DAn = 〈si(An−1)〉n−1
i=0 ⊂ An
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gives a subcomplex of MA.

Proof. We take the same differential, so we only need to show that DAn
∂n−→

DAn−1 is well-defined. It’s enough to show that for an sia ∈ DAn, we have
∂n(sia) ∈ DAn−1. If we open up the sum, ∂n(sia) =

∑n
j=0(−1)jdjsia =∑

j=i,i+1(−1)jdjsia +
∑

j<i(−1)jdjsia +
∑

j>i+1(−1)jdjsia. By the simpli-

cial identities S3, S2 and S4 we have (−1)i(disia−di+1sia) = 0, djsi = si−1dj
for j < i and djsi = sidj−1 for j > i + 1. This implies that ∂n(sia) can be
written as the sum of degenerate simplices. Lastly, observe that in the cal-
culation di+1 is always well-defined, DA0 = 0 and the case n = 1 is naturally
included.

Lemma 1.3. For every k > 0,

NkAn =

{⋂k−1
i=0 ker(di) for n ≥ k + 1,

NAn for n ≤ k

is a subcomplex of MA.

Remark. See Table 1. Observe that we have N0A = MA and Nk+1An ⊂
NkAn. Also Table 1 ”converges” to NA, i.e.,

⋂
k≥0NkA = NA.

Proof. Observe Table 1. For n ≤ k, the statement is proven in Lemma 1.1.
Starting from n ≥ k + 1, we want to show that the map

k−1⋂

i=0

ker(di) = NkAn ⊂ An ∂n−→
k−1⋂

i=0

ker(di) = NkAn−1 ⊂ An−1

is well-defined. Let i < k, then

di∂n(x) = di(
n∑

j=0

(−1)jdjx) =
n∑

j=0

(−1)jdidjx

=
n∑

j=k

(−1)jdidjx =
n∑

j=k

(−1)jdj−1dix = 0

where as usual we used a simplicial identity S1.

Lemma 1.4. For every k > 0,

DkAn =

{
〈si(An−1)〉k−1

i=0 for n ≥ k + 1,

DAn for n ≤ k

is a subcomplex of MA.
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Table 1: Filtration of the Normalized Chain Complex

Differentials are going in the left direction. Each row is a subcomplex of
MA.
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Proof. Observe Table 1. For n ≤ k, the statement is proven in Lemma 1.2.
Starting from n ≥ k + 1, we want to show that the map

〈si(An−1)〉k−1
i=0 = DkAn ⊂ An ∂n−→ 〈si(An−1)〉k−1

i=0 = DkAn−1 ⊂ An−1

is well-defined. A quick look at the proof of Lemma 1.2 makes it clear that,
we use only si and si−1 to write the sum, which proves this lemma.

Remark. Observe that by definition we have DkAn ⊂ Dk+1An, D0A = 0
and

⋃
k≥0DkA = DA. Theorem 1.5 shows that DkAn fully complements

Table 1 to MA.

Theorem 1.5. The natural inclusion map

NAn ⊕DAn
(i,i)−−→ An

is an isomorphism of abelian groups.

Corollary 1.6. The map

NA
p◦i−−→MA/DA

is an isomorphism of chain complexes.

Proof of the Corollary 1.6. We have already seen that each complex has the
same differential. Furthermore p ◦ i is a composition of chain maps. Hence,
Theorem 1.5 directly gives the isomorphism. For the reverse direction, one
needs to show that the corresponding exact sequence splits. This can be
seen in the proof of Theorem 1.5.

Proof of the Theorem 1.5. Naturality of the inclusion map is self-evident.
We want to show that for every k and n,

NkAn ⊕DkAn
'−−→

(i,i)
An. (1)

which would give the result that we want for k = n.
For k = 0 we have N0An = An and D0An = 0 and for n = 0 we have

NkA0 = A0 and DkA0 = 0, for which the statement is obvious. Now, let
k > 0, n > 0. A quick look at the Table 1 makes it clear that, it’s enough
to show (1) for k ≤ n. For n = k we have the statement of the theorem. We
will do induction on k. We assume 1 ≤ k ≤ n.

For k = 1, we want to show that N1An⊕D1An = ker(d0)⊕ im(s0) = An.
For this, let x ∈ An such that d0x = 0 and there exists a y ∈ An−1 such that
s0y = x. But then we have 0 = d0x = d0s0y = y by the simplicial identity
S3. This shows that the subgroups have trivial intersection. Secondly, x −
s0d0x is in the kernel of d0, because: d0x− d0s0d0x = d0x− d0x = 0. Also
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observe that d0 is a section for s0. The upcoming split exact sequence is a
generalization of this situation.

Now we assume that we have An = Nk−1An ⊕ Dk−1An and An−1 =
Nk−1An−1 ⊕ Dk−1An−1. First, we have the following split exact sequence
(it splits thanks to the S3)

0 Nk−1An−1 Nk−1An NkAn 0
sk−1 id−sk−1dk−1

First of all, it’s well-defined. Let x ∈ Nk−1An−1. Then for j < k − 1 by
the simplicial identity S1 we have djsk−1x = sk−2dj−1x = 0. Second map
is covered below. By the splitting lemma, showing that we have split exact
sequence is same as showing that

NkAn ⊕Nk−1An−1
(i,sk−1)−→ Nk−1An

is an isomorphism. To show that it’s injective, assume that x ∈ NkAn and
y ∈ Nk−1An−1 and x+ sk−1y = 0. Then x = −sk−1y and by the simplicial
identity S3 y = dk−1sk−1y = −dk−1x = 0. To show that it’s surjective,
observe that by S1 and S2, for j < k − 1 and x ∈ Nk−1An we have

dj(x− sk−1dk−1x) = djx− djsk−1dk−1x = sk−2djdk−1 = sk−2dk−2djx = 0

and for j = k − 1 we have

dk−1(x− sk−1dk−1x) = dk−1x− dk−1sk−1dk−1x = dk−1x− dk−1x = 0

so x−sk−1dk−1x ∈ NkAn (so the split exact sequence is well-defined). As we
shown before dk−1x ∈ Nk−1An−1 and then obviously (x−sk−1dk−1x, dk−1x)
hits x. Similarly we have the following split exact sequence

0 An−1/Dk−1An−1 An/Dk−1An An/DkAn 0
sk−1

Let x ∈ Dk−1An−1 and without loss of generality, for j < k − 1, x =
sjy for a y ∈ An−2. Then by the simplicial identity S5 we have sk−1x =
sk−1sjy = sjsk−2y, which means that sk−1x ∈ Dk−1An. The fact that it’s
exact is obvious, because the second map is just projection under sk−1.

Finally we have the following commutative diagram:

0 Nk−1An−1 Nk−1An NkAn 0

0 An−1/Dk−1An−1 An/Dk−1An An/DkAn 0

sk−1

'

id−sk−1dk−1

'
sk−1

It’s completely trivial to see that the first square commutes, we have natural
inclusions, projections and observe that sk−1 in the second exact sequence
is defined to commute with the projection. For the second square, only
additional detail is that sk−1dk−1x gets killed under the projection. Here we
also see again how the projection map in Corollary 1.6 comes into play.
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Now we continue by defining the functor Γ : Ch −→ sAb which is going
to be inverse to N . Let C be a chain complex and define

Γ(C)n =
⊕

n�k

Ck

where we have the direct sum indexed by the surjective maps between n and
k in ∆, so we have abelian groups for each n. Now we need to define the
simplicial structure maps. Let θ : m −→ n be a map in ∆op. In order to
define the map ⊕

n�k

Ck −→
⊕

m�l

Cl

it’s enough to define what happens to a summand, say Ck with the index

σ : n � k. Let m
σ′� s

φ
↪→ k be the unique epi-mono factorization (Lemma

0.3) of m
θ−→ n

σ� k. What we want to do here is to first define Ck
φ∗−→ Cs

and put the result in the direct sum with the index σ′ : m� s. Here we get
the motivation from Theorem 1.1. Observe that if we had NAk and NAs
instead of Ck and Cs, then a monomorphism φ : s ↪→ k would always induce
the zero map, unless we have dn : n − 1 ↪→ n or id : n ↪→ n. In order to
have a functor, we need to define the identity as identity map, however for

the case of Cn
dn−→ Cn−1, let the map be the differential of C, so (dn)∗ = ∂n

and for all other cases be the zero map. Observe that we have id∗ = id.

Lemma 1.7. Γ : Ch −→ sAb as described above defines a functor.

Proof. First we need to show that the definition above gives a simplicial
abelian group. Only missing part for this is to show that given θ1 : n1 −→ n2

and θ1 : n2 −→ n3, we have θ1
∗θ2
∗ = (θ2θ1)∗. For this we want to look what

happens to a summand of Γ(C)n3 . Let Ck3 with the index σ3 : n3 � k3 be
the summand. Look at the following commutative diagram:

n1 n2 n3

k1 k2 k3

θ1

σ1

θ2

σ2 σ3

φ1 φ2

Let’s assume that the second square is the epi-mono factorization of

n2
θ2−→ n3

σ3� k3 and that first square is also the epi-mono factorization. Ob-
serve that σ1 and φ2φ1 give the epi-mono factorization of the larger square
too. This way the question is naturally reduced to the monomorphisms.
Here nearly all cases get reduced to the zero map or trivial because of iden-

tity. The only interesting case is when we have n− 2 n− 1 ndn−2 dn−1

But dn−2∗ = ∂n−1 and dn−1∗ = ∂n, so we have ∂n−1∂n = 0 (because we have
a chain complex) and (dn−2dn−1)∗ = 0 (because of the definition of the
functor).
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Now that we know what happens to the objects, let’s look at the mor-

phisms, which have as usual a very plain definition. Let C
f−→ D be a

chain map. Γ(f) : Γ(C) −→ Γ(D) is defined on the summand An with the
index σ : n � k simply as f(Cn) with the same index. Because we have
the same index on the codomain, to show that Γ(f) is a simplicial map, it’s
enough to look at the monomorphisms, for which the only interesting case
is again dn, which commutes, as f is a chain map. Rest of the functoriality
is obvious.

We have a natural map Ψ : ΓN(A) −→ A defined on the summand NAk
with the index σ : n� k as first embedding NAk in Ak naturally and then
pulling back by σ∗:

NAk ↪→ Ak
σ∗−→ An

For naturality, we need to show that for a θ : m −→ n the following diagram
commutes:

ΓN(A)n An

ΓN(A)m Am

Ψn

θ∗ θ∗

Ψm

If we focus on a single summand with the usual notation, we have:

NAk Ak An

NAs As Am

φ∗

σ∗

φ∗ θ∗

(σ′)∗

Both squares commute clearly, where the second square is the induced square
of the epi-mono factorization.

Theorem 1.8. The map Ψ is a natural isomorphism from ΓN to IdsAb.

Proof. We just need to show that for each n, Ψn gives an isomorphism of
abelian groups. This will be proven by induction on n.

For n = 0, there is only a single surjection going out of 0, which is
id : 0 −→ 0 and the statement becomes

⊕

0�0

NA0 = NA0 ' A0

through Ψn which is clear. Now assume the theorem for k < n. For surjec-
tivity, by using Theorem 1.5 and the fact that NAn is in the image through
the index id : n −→ n, we just need to show that for a x ∈ DAn, we have
x in the image, which gets reduced to showing that for every y ∈ An−1

and for every j < n, sjy ∈ An. By the induction hypothesis, there is a
z ∈ ΓN(A)n−1 such that Ψn−1(z) = y and let’s say that z ∈ NAk with
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the index σ : n − 1 � k. Then for z ∈ NAk with the index σsj we have
Ψn(z) = x.

To show that Ψn is injection, we need to do more work. Suppose that
for a family (xσ) ∈⊕

σ:n�kNAk we have

Ψn((xσ)) =
∑

σ:n�k

σ∗xσ = 0

Suppose that k as the domain of σ is greatest such that xσ 6= 0. Observe
that except xn−→n, every element of the family gets mapped to a degenerate
simplex, so by Theorem 1.5 xn−→n cannot be nonzero. This fact is proven in
detail in the proof Theorem 1.9. We need further assumptions and ordering
and for tha define a partial order on the set of surjections n� k by σ1 ≤ σ2

if and only if σ1(j) ≤ σ2(j) for each j ∈ n. Now let σ : n � k be minimal.
Observe that we are ordering surjections for which xσ 6= 0. Furthermore
s2s0 : 5 −→ 3 and s1s1 : 5 −→ 3 are not comparable, so in theory, there can
be more than one minimal.

Now we want to construct a section φ of σ such that, if φ is a right
inverse of another surjection σ′, then σ′ ≤ σ. For this define

φ : k −→ n

j 7−→ max {l ∈ n | σ(l) = j}

With this definition, if we have additionally σ′ψ = idk, then if for j < n
we have l1 = σ′(j) > σ(j) = l2 and with ψ(l2) = t, by the definition of ψ
we get t = ψ(l2) ≥ j however l2 = σ′ψ(l2) = σ′(t) ≥ σ′(j) = l1, which is a
contradiction.

Since Ψ is a simplicial map, We have Ψkd
∗
ΓN(A) = d∗AΨn, we have Ψkφ

∗ =

φ∗Ψn. Because of the induction hypothesis, φ∗((xσ)) = 0. Now look at the
square

k n

k l2

ψ

id λ

This square completely characterizes what is going to be in the image of ψ∗

that corresponds to the index id : k −→ k. But for l2 > k the induced square
applied to xn�l2 gives zero. But the arrow at the bottom is an injection, so
we must have

k n

k k

ψ

id λ

id

So, ψ is a section of λ. We have chosen σ in a way that it’s minimal with
xσ 6=. But then, thanks to the way we constructed ψ, we have λ ≤ σ, so xλ
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are all zero, which means in the image of ψ∗, xσ (embedded) is solely what
goes to the id : k −→ k. However, as we have seen before if Ψk takes an
element of ΓN(A)k to 0, then that component must be zero, which gives a
contradiction.

Now we are ready to prove the Dold-Kan correspondence:

Theorem 1.9 (Dold-Kan). The functors N : sAb −→ Ch and Γ : Ch −→
sAb form an equivalence of categories.

Proof. In Theorem 1.8 we have proven the half of the theorem. Now we want
to show that there is a natural isomorphism from NΓ to IdCh. Let C be
a chain complex and define Φ(C) : NΓ(C) −→ C as Φn(C) : (NΓ(C))n ↪→
(MΓ(C))n = Γ(C)n =

⊕
n�k Ck. It has been already discussed that this

inclusion is natural, so it’s enough to show that the image of this map is Cn.
First observe that im(Φn(C)) =

⋂n−1
i=0 ker(di). Furthermore, di : n−1 ↪→

n
id−→ n has the epi-mono factorization of n − 1

id−→ n − 1
di

↪→ n and so for
i < n the induced map is the zero map on the component that’s indexed by
id : n −→ n, which means that Cn ⊂ im(Φn(C)).

For the opposite direction, by Theorem 1.5, we have Γn(C) ' (NΓ(C))n⊕
(DΓ(C))n. Now we want to show that a component Ck for a k < n with the
index σ : n� k belongs to the degenerate part of this direct sum. Observe

that such a surjection can be written as the composition n
si� n− 1

σ′� k for
an i < n and then the component Ck with the index σ′ in Γn−1(C) hits Ck
in Γn(C) completely which can be seen by the diagram

n n− 1

k k

si

σ σ′

id

Then we are done, because Cn is in the image and any other Ck is not.

1.2 Chain homotopy between NA and MA

Throughout this chapter, lower indices are for the usual indices of a chain
map unless stated otherwise, for example when we define the chain homo-
topy. Also sometimes they’re not denoted and clear from the context. The
following theorem says that, in the eyes of homology, NA carries all the
necessary information of a simplicial abelian group A.

Theorem 1.10. The natural inclusion map i : NA −→ MA, A ∈ sAb, in-
duces an isomorphism in the singular homology i? : H?(NA)

'−→ H?(MA).

Remark. Chain homotopic maps induce the same homomorphism on sin-
gular homology. It’s enough to show that i is a chain homotopy equivalence.
A proof is spelled out in Proposition 2.12 of [5].
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Table 1 consists of homotopic chain complexes in each row, NkA. First
let ik denote the inclusion ik : Nk+1A −→ NkA. Observe that in =
i01i

1
2...i

n−1
n and i0 = i00 = idA0 . This map goes upwards in the table. For the

inverse direction (going downwards in the table), let x ∈ NkAn and define

fk(x) =

{
x for n ≤ k,

x− skdkx for n > k

Lemma 1.11. fk is a chain map from NkA to Nk+1A and the composite
fk ◦ ik is the identity map idNk+1A.

Proof. Main argument of showing that fk is well-defined can be found in
the proof of Theorem 1.5. In order to show that it’s a chain map, there are
two non-trivial cases. First,

NnAn+1 NnAn

Nn+1An+1 Nn+1An

∂n+1

id−sndn id

∂n+1

Here ∂n+1 = (−1)n+1dn+1 + (−1)ndn, so we want to show that ∂n+1x =
∂n+1(x− sndnx) = ∂n+1x− ∂n+1sndnx, which is equivalent to showing that
dn+1sndnx = dnsndnx, and this follows by simplicial identity S3.

For the second case, assume n > k + 1. Now we want to show that
∂n(x−skdkx) = ∂nx−skdk∂nx, so we need to show that ∂nskdkx = skdk∂nx.
But by the simplicial identities S3 we have the cancellation in the beginning
and then by S4, we shift the indices:

∂nskdkx =

n∑

j=k+2

(−1)jdjskdkx

=
n∑

j=k+2

(−1)jskdj−1dkx =
n∑

j=k+2

(−1)jskdkdjx = skdk∂nx

Now, for the second part of the lemma, we just need to look at the case
when n > k + 1, but it’s still trivial, because skdkx = sk0 = 0.

When we are going up in Table 1, we are embedding and when we’re
going down we are ”retracting”, the copy of Nk+1A in NkA stays unchanged
under fk. Now we want to define a homotopy between idNkA and ik ◦ fk,
which corresponds to going right in the table. Let x ∈ NkAn, and define
tkn : NkAn −→ NkAn+1 by

tkn(x) =

{
0 for n < k,

(−1)kskx for n ≥ k

21



One point to be careful about this notation is that when we substitute
n in tkn, for example with n− 1, then we substitute the n in the conditions
too.

Lemma 1.12. The chain map ik ◦ fk is homotopic to idNkA and this ho-
motopy is given by tk.

Proof. Firstly, let n ≥ k and x ∈ NkAn. Then for j < k − 1, we have
dj(−1)kskx = (−1)kdjskx = (−1)ksk−1djx = 0, so tkn is well-defined.

Because of the definition of NkAn, the following diagram changes with
different k and n. Combinatorial details of the proof depends on where we’re
in the Table 1.

... NkAn+1 NkAn NkAn−1 ...

... NkAn+1 NkAn NkAn−1 ...

∂n

idNkA ik◦fk
tkn

tkn−1

∂n+1

We want to show that

∂n+1t
k
n + tkn−1∂n = idNkA − ik ◦ fk (2)

Let x ∈ NkAn. There are four cases:
Case 1: n < k : By definition tkn(x) = tkn−1(x) = 0 and fk(x) = x.
Case 2: n = k : Again tkn−1(x) = 0 however tkn(x) = (−1)snx and

∂n+1(x) = (−1)n+1dn+1x + (−1)ndnx. Using the simplicial identity S3, we
have

(−1)n+1(−1)ndn+1snx+ (−1)n(−1)ndnsnx = dnsnx− dn+1snx = x− x = 0

And fk(x) = x, so the right-hand side of (2) becomes 0 too.
Case 3: n = k + 1 : Main observation for this case is that ∂n+1(x) =

(−1)n+1dn+1x+(−1)ndnx+(−1)n−1dn−1x. By using the simplicial identities
S4 and S3 the first summand of the left-hand side of (2) becomes

(−1)n+1(−1)n−1dn+1sn−1x+ (−1)n(−1)n−1dnsn−1x

+ (−1)n−1(−1)n−1dn−1sn−1x = dn+1sn−1x− dnsn−1x+ dn−1sn−1x

= sn−1dnx− x+ x = sn−1dnx

and the second summand becomes

(−1)n−1(−1)nsn−1dnx+(−1)n−1(−1)n−1sn−1dn−1x = sn−1dn−1x−sn−1dnx

So, the left-hand side is equal to sn−1dn−1x. We have also

idNkA(x)− ik ◦ fk(x) = x− (x− skdkx) = sn−1dn−1x.
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Case 4: n > k + 1 : Details of this case is same with the previous case,
however the definitions for domains of the maps differ, which actually doesn’t
change any calculation.

In this case the equation (2) becomes

n+1∑

j=k

(−1)j(−1)kdjskx+
n∑

j=k

(−1)k(−1)jskdjx = skdkx

And by using the simplicial identities S3 and S4 we have

n+1∑

j=k

(−1)j(−1)kdjskx = x− x+
n+1∑

j=k+2

(−1)j(−1)kdjskx

=

n+1∑

j=k+2

(−1)j(−1)kskdj−1x =

n∑

j=k+1

(−1)k(−1)j+1skdjx

After the cancellation, we have the obvious equality.

We want to use these row-by-row homotopies to construct a homotopy
between NA and MA. For this, define f : MA −→ NA by letting fn :
MAn −→ NAn be the composite fn−1fn−2...f0, and f0 = idMA.

Proof of Theorem 1.10. It’s clear that f is a well-defined chain map. Also
Lemma 1.11 implies that f ◦ i = idNA. For the reverse direction, define
Tn : An −→ An+1 = t0n + i0n+1t

1
nf

0
n + ...+ i0n+1...i

n−1
n+1t

n
nf

n−1
n ...f0

n, so T0 = t0n.
We want to show that

∂n+1Tn + Tn−1∂n = idA − in ◦ fn = idA − i0n...in−1
n fn−1

n ...f0
n

This might seem complicated, especially thanks to the indices. Lower indices
are always completely clear from the domain naturally:

∂n+1Tn + Tn−1∂n = ∂n+1(t0 + i0t1f0 + ...+ i0...in−1tnfn−1...f0)

+ (t0 + i0t1f0 + ...+ i0...in−2tn−1fn−2...f0)∂n
(3)

Now we will use the fact that ik and fk are chain maps and (2) holds for
every k and n. Observe that summands in (3) becomes, respectively

∂n+1t
0 + i0∂n+1t

1f0 + ...+ i0...in−1∂n+1t
nfn−1...f0

and
t0∂n + i0t1∂nf

0 + ...+ i0...in−2tn−1∂nf
n−2...f0

Now, observe that for j < n − 1 we have ∂n+1t
j + tj∂n = idNjA − ij ◦ f j .

If we compose this equation with i0...ij−1 from left and with f j−1...f0 from
right, we get

Sj := i0...ij−1∂n+1t
jf j−1...f0 + i0...ij−1tj∂nf

j−1...f0

= i0...ij−1f j−1...f0 − i0...ijf j ...f0
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with S0 = idA − i0 ◦ f0 Then, after putting the calculations together we get

∂n+1Tn + Tn−1∂n =

n−1∑

j=0

Sj + i0...in−1∂n+1t
nfn−1...f0

But observe that
∑n−1

j=0 Sj = idA− i0...in−1fn−1...f0, so now we just need to

show that i0...in−1∂n+1t
nfn−1...f0 = 0. Let x ∈ An and y = fn−2...f0(x).

Then tnfn−1(y) = (−1)nsn(y − sn−1dn−1y) ∈ NnAn+1, so the differential
∂n+1 is just (−1)ndn + (−1)n+1dn+1. Now lastly by using the simplicial
identities S3 we have

i0...in−1∂n+1t
nfn−1...f0(x) = (−1)ndn(−1)nsn(y − sn−1dn−1y)

+ (−1)n+1dn+1(−1)nsn(y − sn−1dn−1y)

= (y − sn−1dn−1y)− (y − sn−1dn−1y) = 0
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